Advanced Multivariate Time Series Forecasting Models
نویسندگان
چکیده
منابع مشابه
Copula Methods for Forecasting Multivariate Time Series
Copula-based models provide a great deal of exibility in modelling multivariate distributions, allowing the researcher to specify the models for the marginal distributions separately from the dependence structure (copula) that links them to form a joint distribution. In addition to exibility, this often also facilitates estimation of the model in stages, reducing the computational burden. Thi...
متن کاملOptimal Selection of Multivariate Fuzzy Time Series Models to Non-stationary Series Data Forecasting
This paper links testing of non-stationary time series features to the selection of fuzzy model for time series prediction. The data for model test are obtained from AREMOS, Taiwan. Empirical results show that fuzzy time series models have different performance patterns in predicting non-stationary time series. Data with a clear time trend, such as consumption, exports or other macroeconomic da...
متن کاملForecasting economic time series using unobserved components time series models
A preliminary version, please do not quote
متن کاملEvolving Time Series Forecasting Neural Network Models
In the last decade, bio-inspired methods have gained an increasing acceptation as alternative approaches for Time Series Forecasting. Indeed, the use of tools such as Artificial Neural Networks (ANNs) and Genetic and Evolutionary Algorithms (GEAs), introduced important features to forecasting models, taking advantage of nonlinear learning and adaptive search. In the present approach, a combinat...
متن کاملHybrid Neural Models for Time-series Forecasting
Three new hybrid neural models which are based upon the basic neural model put forth by McCulloch and Pitts (Haykin, 1999) and the compensatory neural models by Sinha et al. (2000), (2001) are proposed in this paper. The basic neural and the compensatory neural models are modified to take into account any linear dependence of the outputs on the inputs. This makes the hybrid models suitable for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics and Statistics
سال: 2018
ISSN: 1549-3644
DOI: 10.3844/jmssp.2018.253.260